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te and chronic hypoxia exists within the three-dimensional microenvironment of solid tumors and
therapy resistance, genetic instability, and metastasis. Replicating cells exposed to either severe
hypoxia (16 hours with 0.02% O2) followed by reoxygenation or moderate chronic hypoxia (72 hours
.2% O2) treatments have decreased homologous recombination (HR) protein expression and func-
s HR defects are synthetically lethal with poly(ADP-ribose) polymerase 1 (PARP1) inhibition, we
ted the sensitivity of repair-defective hypoxic cells to PARP inhibition. Although PARP inhibition
did not affect HR expression or function, we observed increased clonogenic killing in HR-deficient
ic cells following chemical inhibition of PARP1. This effect was partially reversible by RAD51 over-
sion. PARP1−/− murine embryonic fibroblasts (MEF) showed a proliferative disadvantage under hyp-
assing when compared with PARP1+/+ MEFs. PARP-inhibited hypoxic cells accumulated γH2AX and
foci as a consequence of altered DNA replication firing during S phase–specific cell killing. In sup-
f this proposed mode of action, PARP inhibitor–treated xenografts displayed increased γH2AX and
d caspase-3 expression in RAD51-deficient hypoxic subregions in vivo, which was associated with
sed ex vivo clonogenic survival following experimental radiotherapy. This is the first report of se-
cell killing of HR-defective hypoxic cells in vivo as a consequence of microenvironment-mediated
xtual synthetic lethality.” As all solid tumors contain aggressive hypoxic cells, this may broaden the
l utility of PARP and DNA repair inhibition, either alone or in combination with radiotherapy and
clinica

chemotherapy, even in tumor cells lacking synthetically lethal, genetic mutations. Cancer Res; 70(20); 8045–54.
©2010 AACR.
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in regions distant from the blood vasculature as a
on of decreased oxygen diffusion and leads to gradients
derate to severe hypoxia.
atumoral hypoxia is an adverse clinical prognostic fac-
sociated with decreased disease-free survival for many
ancers (1–5). Hypoxia can increase resistance to both
herapy and chemotherapy (6). Additionally, hypoxia can
se metastatic spread and decrease DNA repair (7–9).
ere hypoxia can lead to an S-phase arrest in the absence
A damage, whereas subsequent reoxygenation increases
e oxygen species (ROS) production and DNA damage
ger a CHK2-dependent G2 arrest (10–14). Alternatively,
cells can adapt to moderate chronic hypoxia with min-
hanges in proliferation, cell cycle distribution, or clono-
survival, suggesting a bypass of cell cycle checkpoints
). In both types of hypoxia, the homologous recombina-
HR) pathway involved in the repair of DNA double-
breaks (DSB) is compromised (15–17). Recent studies
hown that HR defects (e.g., BRCA1/2 deficient) are syn-
ally lethal with inhibition of the DNA single-strand
(SSB) repair protein, poly(ADP-ribose) polymerase 1
1; refs. 18–20). In response to DNA breaks, PARP1 cat-

the addition of poly(ADP-ribose) (PAR) polymers from
onto nuclear acceptor proteins, including histones,
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nd PARP1 itself, to attract repair proteins and change
atin conformation (21). Inhibition of PARP1 results in
cumulation of SSBs, which are converted to DSBs
encountered by a replication fork. These collapsed
tion forks require HR for repair and continued DNA
tion (22). As BRCA1/2-deficient cells are HR deficient
ncapable of repairing DNA replication–associated
treatment of these tumors with PARP inhibitors leads
thetic lethality (18).
resent, the use of PARP inhibitors in the clinic is lim-
trials in patients with genetic defects in BRCA1/2 (23).
the existence of HR-defective hypoxic cells, we hypoth-
that these cells might also be sensitized to PARP inhi-
. To investigate this hypothesis, we studied both
y and chronically hypoxic tumor cell cultures and hyp-
ubregions of tumor xenografts and show that repair-
ive hypoxic cells are sensitized to PARP inhibition
sequence of “contextual synthetic lethality”). As all
tumors contain hypoxic cells, our observations may
se the clinical utility of PARP (or other) inhibitors in
nation with radiotherapy or chemotherapy to target
ent-resistant hypoxic tumor cells.

rials and Methods

ulture, hypoxia treatments, and PARP inhibitors
origin and culture of HCT116, 22RV1, DU145, MCF-7,
nd H1299 cell lines have been reported previously (13,
). Immortalized murine embryonic fibroblasts (MEF)
ype or deficient for PARP1 or hypoxia-inducible factor-
IF-1α) were derived from day 13.5 embryos; derivation,
e, and characteristics were as previously described
).
arithmically growing cells were exposed to 0.2% O2

% CO2 and balanced N2 using an Invivo2 400 Hypoxic
tation (Ruskinn). To achieve lower oxygen levels, cells
lated on glass dishes and incubated in a Bactron II
bic chamber (Shell Labs) at <0.02% O2.
-888 was obtained from Abbott Laboratories through
IH Cancer Therapy Evaluation Program (CTEP) and
tituted in water. 4-Amino-1,8-naphthalimide (ANI) was
ased from Acros Organics and reconstituted in DMSO.
88 and ANI were used at concentrations of 2.5 and
ol/L, respectively, unless otherwise stated. Enzymatic
activity was assessed using the Universal Chemilumines-
ARP assay kit (Trevigen) as previously described (26).
chronized cell populations were generated by the G2

c shake-off technique and confirmed with flow cytome-
onogenic assays were performed to determine cell via-
as previously described (15).

rn blotting, small interfering RNA treatments,
icroscopy

stern blot analysis was performed as previously
bed (13, 15). Primary antibodies included ACTIN
a-Aldrich, Inc.), PAR and PARP1 (Trevigen), HIF-1α

ransduction Laboratories), and RAD51 (Santa Cruz).
small interfering RNA (siRNA) were obtained from

softwa
and 20

r Res; 70(20) October 15, 2010
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gen and used at a concentration of 0.25 nmol/L for
urs with Lipofectamine 2000 (Invitrogen). Immunoflu-
nt microscopy was carried out as previously de-
d (13, 26). The primary antibodies included RAD51
Cruz), γH2AX (Epitomics), PAR (Trevigen), and
(Novus Biologicals).

t repeat–green fluorescent protein HR assay
direct repeat–green fluorescent protein (DR-GFP) as-
as used to evaluate HR as previously described (15).
, H1299 cells containing the DR-GFP construct were
ected with a vector encoding for the I-SceI endonucle-
generate a DSB. Flow cytometry was used to detect
ositive cells that have undergone HR.

n xenograft assays
00-μL solution containing 2 × 106 HCT116, 22RV1, or
ells were injected s.c. into the hind flank of CD1 nude
(Charles River). Tumors were grown to a volume of
m3, and tumor-bearing mice were given an i.p. injec-
ith 30 mg/kg EF5 (Varian) 3 hours before sacrifice.
rs were excised and fixed in 10% formalin, paraffin
ded, and sectioned to 4-μm thickness. For ABT-888
ents, RKO xenografts were treated twice daily with
/kg ABT-888 or vehicle for 5 days. Tumors were excised
rs after the final ABT-888 treatment and prepared for
nohistochemical staining for γH2AX (Epitomics),
1 (Santa Cruz), and cleaved caspase-3 (CC3; Cell Signal-
s previously described (17).

al gut epithelium toxicity assay
mal tissue toxicity was determined by measuring intes-
lonogenic survival in vivo. Tumor-bearing mice were
d with 5 days ABT-888 or vehicle as described above.
indicated, whole-body irradiation with 5 Gy (Gamma-
Extractor) was given 24 hours after the final ABT-888

Three days after radiation, the small intestines were re-
, washed, and fixed in formalin. Gut cross sections
tained with Ki-67 (brown) and hematoxylin (blue, nu-
ounterstain). Analysis was based on five cross sections
ouse for three mice per treatment group.

fiber assay
A fiber spreads were obtained, as previously described
ith the following modifications. Aerobic samples were
ntially labeled with 25 μmol/L CIdU and 250 μmol/L
0-minute pulses). For hypoxic samples, CldU-contain-
edium was added to cells immediately before hypoxic
ent and incubated for 5 hours, after which the medium
placed with hypoxic equilibrated IdU-containing medi-
r 1 hour. Reoxygenation samples were treated with
as in the hypoxic samples, and incubated for 6 hours
reoxygenation, at which point the medium was re-
with aerobic IdU-containing medium and further incu-
for 1 hour. Fiber spreads were imaged using a Bio-Rad
nce confocal microscope and analyzed using ImageJ

re (NIH). At least 100 replication tracks were measured,
0 replication structures were counted per experiment.
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tics
ults are presented as the mean ± SEM with significance
ated by Student's t test with a standard software
ge (GraphPad Prism). Significance was assigned for a
e of <0.05.

lts

ia decreases HR independent of PARP
oxia can decrease the expression of a number of HR
ns, including RAD51, RAD51C, XRCC3, RAD52, RAD54,
1, and BRCA2 (15, 17). To explore the relationship
en hypoxia, altered HR protein expression, and PARP
ty in vitro, we assessed the expression of RAD51 in

inhibited cells under aerobic or hypoxic conditions.
expression was downregulated

A s

.05.

acrjournals.org
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acute hypoxia (16 hours × 0.02% O2), mimicking hyp-
onditions caused by reversible changes in tumor vessel
ion (Fig. 1A). RAD51 levels remained suppressed for at
hours after reoxygenation. At longer time points, we

bserved decreased RAD51 expression across multiple
es (H1299, DU145, RKO, MCF7, HCT116, and MEFs),
at less severe oxygen levels (72 hours × 0.2% O2),
king hypoxic conditions found distant from the tumor
ature (Fig. 1B). This RAD51 effect was observed at O2

ntrations of <0.5% (Supplementary Fig. S1A) and is con-
t with our previous report of hypoxia-mediated de-
s in the translation of HR proteins (15). Additionally,
the first report using a genetic knockout model to show
is effect is independent of HIF-1α status (Fig. 1B).

imilar phenomenon is observed in vivo as RAD51 ex-
after treatment with pression is inversely correlated with hypoxia (EF5 staining)
1. Hypoxia decreases HR
dent of PARP activity.
51 protein expression is
ed in RKO cells following
0.02% O2 and remains
ssed for at least after 8 h of
nation with or without
8. B, RAD51 protein
ion is decreased in H1299,
, RKO, HCT116, and
ancer cells as well as
isogenic MEFs following
0.2% O2 with or without
8. C, functional HR (as
ed by the DR-GFP assay) is
ed following 72 h × 0.2%
is unaffected by ABT-888 in
cells. Representative dot
olumns, mean of three
ents; bars, SEM;
Cancer Res; 70(20) October 15, 2010 8047
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ltiple xenograft models (Supplementary Fig. S1B–D).
conditions were also sufficient to decrease functional
assessed by the DR-GFP HR reporter assay (Fig. 1C).
er, in contrast to a recent report (28), PARP inhibi-
self did not alter RAD51 expression or HR function
either aerobic or hypoxic conditions (Fig. 1A–C;

ementary Fig. S2). We conclude that hypoxia leads
ective HR function and that this is independent of
activity.

suppression kills HR-defective hypoxic cancer
n S phase
cells with genetic defects in HR proteins such as
1/2 are exquisitely sensitive to PARP inhibition due
etic synthetic lethality (18, 19), we assessed whether
fective hypoxic cells are also sensitive to PARP inhi-
to illustrate the concept of “contextual” synthetic le-
due to the tumor microenvironment. We observed

ARP1-/- MEFs had a profound proliferation defect un-
poxic conditions compared with matched PARP1+/+

(Fig. 2A), indicating an inability of PARP-deficient

. D, hypoxic S-phase RKO cells generated by mitotic shake-off were more
f three to five experiments; bars, SEM; *, P < 0.05.
to adapt to hypoxic conditions. As an important
tional end point, we tested PARP inhibitors as po-

replic
hypot

r Res; 70(20) October 15, 2010

Research. 
on January 18, 20cancerres.aacrjournals.org Downloaded from 
l sensitizers of HR-deficient hypoxic cells. Proliferat-
lls gassed under conditions of moderate chronic
ia, which led to suppressed HR, had decreased clono-
survival when treated with PARP inhibitors across
le tumor cell types (Fig. 2B; Supplementary Fig. S3A).
rly, siRNA knockdown of RAD51 expression to levels
ed under hypoxic conditions also resulted in increased
ivity to PARP inhibition (Supplementary Fig. S3B). A
profound sensitization was observed when cells were
d with PARP inhibitors under severe acute hypoxia
ed by reoxygenation (Fig. 2C). The increased clono-
cell kill may be due to synergy between PARP inhibi-
nd oxidative damage caused by ROS generated on
enation from severe hypoxia or anoxia (11). To un-
nd the role of RAD51 in this phenotype, we overex-
ed RAD51 in hypoxic cells and observed partial
of cellular lethality (Fig. 2C). Complete rescue is

bly not achieved due to suppression of multiple
ers of the HR pathway by hypoxia, in addition to
1 (15).
en the role of PARP1 in preventing the collapse of

tive than G1 phase cells to PARP inhibition. Points and columns,
2. PARP suppression kills HR-defective hypoxic cancer cells in S phase. A, PARP1-deficient MEFs proliferate slower under hypoxic (0.2% O2)
ns than their isogenic counterparts. B, pharmacologic inhibition of PARP1-sensitized RKO, H1299, and DU145 cells when treated with 72 h × 0.2%
pharmacologic inhibition of PARP1-sensitized RKO cells when treated with 16 h × 0.02% O2. Partial rescue is achieved by overexpression of

sensi
ation forks into replication-associated DSBs, we
hesized that PARP inhibition is toxic to hypoxic cells
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ell-cycle specific manner. Using synchronized cell
ations, we observed that hypoxic cells in S phase,
t G1 phase, were preferentially sensitized to PARP in-
n when compared with aerobic cells (Fig. 2D).

inhibition of hypoxic cells induces DNA damage
liferating cells during reoxygenation or chronic
ation to hypoxia
P inhibition results in the accumulation of collapsed
tion forks requiring HR for their repair (18, 19). We
esized that HR-deficient hypoxic cells would have in-

d difficulty in repairing collapsed replication forks re-
g in cell death. The rate of repl

test if

.05.

acrjournals.org
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enation was determined by DNA replication fiber
is. This confirmed that PARP inhibition increased
te of replication restart during reoxygenation after se-
ypoxia, thus indicating that PARP functions to reduce
replication kinetics in the presence of accumulating
damage (Fig. 3A and B). Consistent with this finding,
inhibition in HR-defective hypoxic cells led to elevat-
P1 and γH2AX foci following either acute or chronic
ic exposure (Fig. 3C and D). Hypoxia results in repli-
fork stalling (10, 29), and it has recently been shown
ARP is activated at stalled replication forks (30). To

the increase in PARP activity in hypoxic cells is re-
ication restart after lated to an increased amount of hypoxia-stalled replication
3. PARP inhibition induces
mage in proliferating
cells. A and B, replication
alysis indicates that PARP
n using 4-amino-1,8-
alimide (ANI) increased the
replication restart during
nation after 16 h × 0.02%
KO cells. Representative
ion fiber images.
unofluorescent staining of
foci in RKO cells shows
elevation following
nation after 16 h × 0.02%
n treated with 2.5 μmol/L
8. D, immunofluorescent
of γH2AX foci in H1299
ows elevated foci following
nt with 72 h × 0.2% O2

μmol/L ABT-888.
s, mean of three
ents; bars, SEM;
Cancer Res; 70(20) October 15, 2010 8049
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we colocalized hypoxia-induced PAR foci with induced
tion protein A (RPA) foci that form at stalled replica-
rks. We found that PAR foci colocalize well with RPA
upplementary Fig. S4), suggesting that PARP is indeed
ted at hypoxia-stalled replication forks.
conclude that PARP inhibition leads to accumulation
A breaks in cycling hypoxic cells (during reoxygenation
a consequence of chronic hypoxic adaptation) similar

five tumors per treatment group. *, P < 0.05.
t reported for tumor cells that are genetically null for
8, 19).

5 days
subreg

r Res; 70(20) October 15, 2010

Research. 
on January 18, 20cancerres.aacrjournals.org Downloaded from 
inhibition induces killing of hypoxic tumor
n vivo
gle-agent dosing with PARP inhibitors can lead to
h delay in wild-type BRCA1/2 tumor xenograft models
e therefore tested whether our observation of syn-
lethality between hypoxia-mediated HR defects and
inhibition also occurred in vivo. RKO xenografts were
d twice daily with 50 mg/kg ABT-888 or vehicle for
4. PARP inhibition of hypoxic tumor cells in vivo induces DNA damage. A, schematic of ABT-888 treatment. RKO xenografts were treated twice
r 5 days with 50 mg/kg ABT-888 and then collected for immunohistochemical (IHC) staining and determination of PARP activity. B, relative enzymatic
ctivity of tumor lysates collected 2 h after the final ABT-888 treatment verifies PARP inhibition in vivo. C, representative immunohistochemical
of vehicle- and ABT-888–treated tumors show decreased RAD51 staining in EF5-avid subregions. ABT-888–treated tumors show increased γH2AX
3 staining (white arrows) in EF5-positive subregions compared with vehicle-treated tumors. Scale bar, 100 μm. D, quantification of γH2AX and
and assayed for DNA damage within hypoxic tumor
ions. A schematic of the treatment protocol is shown
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. 4A. Tumor lysates were collected and used to
m that inhibition of PARP activity was achieved
(Fig. 4B). Immunohistochemical staining confirmed
sed expression of RAD51 in hypoxic (EF5-avid) tu-
ubregions in both the vehicle and PARP-inhibited
s (Fig. 4C). Importantly, hypoxic regions of the PARP-
ted tumors displayed significantly elevated expression

2AX and CC3 selectively across the EF5 gradient
C and D).

is sho
radiat

e replication forks in S phase. These collapsed replication forks are lethal to tum
sis, mitotic catastrophe, autophagy, or terminal senescence. *, P < 0.05.
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determine if PARP inhibition in vivo selectively kills
ic tumor cells, we performed ex vivo clonogenic assays
T-888–pretreated tumors that were exposed to 5-Gy
ng radiation (IR) 24 hours after the final ABT-888
After drug washout, IR should selectively kill any re-
ng aerobic cells without bias from PARP inhibitor
ensitization. A schematic of the treatment protocol

wn in Fig. 5A. Clonogenic survival following tumor ir-
ion in vivo is an established assay to measure changes
5. PARP inhibition of hypoxic tumor cells in vivo induces cell death. A, schematic of ABT-888 treatment. RKO xenografts were treated twice
r 5 days with 50 mg/kg ABT-888. Mice were left for 24 h to allow for drug washout before treatment with 5 Gy of IR followed by ex vivo clonogenic
. This protocol unmasks the hypoxic cell kill without bias from aerobic cell radiosensitization by PARP inhibition. B, ex vivo clonogenic assays
ecreased survival of ABT-888–treated tumors following exposure to 5 Gy of IR. C, analysis of mouse intestinal crypts shows no toxicity from PARP
n or IR. D, model for hypoxia-mediated contextual synthetic lethality with PARP inhibition. Solid tumors have substandard vasculature leading
ients of moderate to severe hypoxia. Severe acute hypoxia decreases HR capacity and leads to cell cycle arrest, which is reversible on
nation. Moderate chronic hypoxia also decreases HR capacity but still allows for proliferation. PARP inhibition results in unrepaired SSBs, which
or cells with hypoxia-induced HR defects potentially though

Cancer Res; 70(20) October 15, 2010 8051
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hypoxic tumor fraction, as the radiosensitive aerobic
cells are preferentially killed over more radioresistant
ic cells. The radiation was delivered 24 hours after the
BT-888 dose, a time when pharmacokinetic and phar-
ynamic studies have shown a return to background
(32). We observed that ABT-888–pretreated tumors
wer survival than vehicle-treated tumors following
tion (Fig. 5B). This is consistent with PARP inhibi-
duced killing of hypoxic HR-defective cells before
nge with IR. However, given the effects of PARP inhi-
of tumor vasculature (33) and the relatively low hyp-
action of the RKO xenografts, it would be difficult to
fferences in growth delay that could be directly attrib-
o sensitization of hypoxic cells to PARP inhibition.
ortantly, this regimen of PARP inhibition, even in
nation with the radiation treatment, did not kill nor-
ssue clonogens as measured by a gut clonogenic assay
C). This shows the increased therapeutic ratio of
inhibitor treatment as resistant, hypoxic tumor tis-
re targeted without killing normal tissues. We con-
that hypoxic sensitization of tumor cells to PARP
ion occurs in vivo. A model for the proposed mecha-
of hypoxic cell death due to contextual synthetic
ty is shown in Fig. 5D.

ssion

rently, the use of PARP inhibitors as single agents has
imited to clinical trials for patients with genetic defi-
es in BRCA1/2 (23). There is active interest in identify-
ditional genetic, epigenetic, or microenvironmental
es that could lead to a “BRCAness” phenotype with in-
d sensitivity to PARP inhibitors. To this end, high-
hput screens have identified several potential targets
ng sensitivity to PARP inhibition, including the tran-
ion coupled DNA repair proteins DDB1 and XAB2
e cyclin-dependent kinase 5 (34, 35). Recently, PTEN
ncy leading to suppressed RAD51 has also been shown
sitize tumor cells to PARP inhibition (36). In this re-
e have shown that hypoxia-induced HR defects can

ield a “BRCAness” phenotype. Unlike a recent report
Hegan and colleagues (28), our findings are indepen-
f any direct PARP-mediated effects on RAD51 expres-
r HR function. Instead, ABT-888 had no effect on
1 protein (Fig. 1A and B) or mRNA (Supplementary
2A) expression nor did it alter the efficiency of DR-
easured HR (Fig. 1C) or sensitivity to mitomycin C
) (Supplementary Fig. S2C). Additionally, PARP inhibi-
one did not induce a statistically significant increase in
expression in vitro (Fig. 3D) or in vivo (Fig. 4D). Only

junction with hypoxia do we observe decreased HR
ynthetic lethality that translates to increased clono-
killing. This may expand the utility of PARP inhibitors
used alone or in combination with radiotherapy or che-
rapy by targeting the hypoxic subpopulation of tumor
hat are otherwise resistant to therapy and possibly re-

ble for distant metastatic spread (9). Indeed, the use of
inhibitors in combined therapy has already shown

agents
setting
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se in preclinical models with improved growth delay
iation, temolozolomide, cisplatin, carboplatin, or cyclo-
hamide-treated tumors (31–33, 37). In future clinical
we foresee the need to determine the hypoxic fraction
ors to select for patients that would most benefit from
rategy.
as been shown that PARP1 has a role in HIF-1α stabi-
n and signaling mediated by nitric oxide and oxidative
(38, 39). It is conceivable that PARP inhibition could
hibit HIF-1α accumulation and signaling leading to a
de of hypoxic responses and more cell death. However,
model systems, we do not observe any altered stabili-
of HIF-1α (Fig. 1A and B) or altered HIF-1 transcrip-
activity (Supplementary Fig. S2B).
groups have reported PARP inhibitor and cisplatin-
nt phenotypes in BRCA2-defective cells based on a
ing BRCA2 mutation (40, 41). In contrast, our contex-
ynthetic lethality model would not lead to acquired
c resistance given an alternate pathway of decreased
sed on the decreased transcription and translation of
nes (15, 42).
compromised hypoxic cells replicating under moder-
poxia or following reoxygenation showed elevated ex-
on of the DNA damage markers γH2AX and 53BP1
treated with PARP inhibitors (Fig. 3C and D). A sim-
nding was reported for BRCA2−/− cells exposed to
inhibition (18, 19). Severe hypoxia leads to stalled
tion, which can be overcome during reoxygenation.
ver, in the presence of PARP inhibition, our DNA re-
oci and replication fiber data support that HR-defi-
reoxygenated or chronically hypoxic cells acquire
sed/damaged replication forks (Fig. 3A and B). Con-
t with these data, the toxicity was primarily mani-
in S-phase cells (Fig. 2D). Our findings agree with
of Sugimura and colleagues, who showed that PARP1
uired for replication fork slowing on damaged DNA
at fork slowing is HR dependent (43). The epistasis
en PARP and HR is explained by PARP being re-
d to hypoxia-stalled forks to activate a slow HR repair
s (30). This model is also supported by the colocali-
of PAR polymers and RPA foci in hypoxia-treated

Supplementary Fig. S4).
development of drugs designed to exploit tumor hyp-
as been focused on prodrugs that are activated by
olic reduction under hypoxic conditions to form free
l–based cell cytotoxins causing DNA strand breaks,
amage, and DNA-protein cross-links (6). Our work here
rts another novel treatment strategy to sensitize tradi-
ly resistant hypoxic cells using PARP inhibitors, which
ave a unique therapeutic ratio in killing hypoxic cancer
ver aerobic normal cells. This is specifically true given
clinical trial data in which PARP inhibition had min-
ide effects (23, 44, 45). There may also be a role for
ned PARP and HIF-1α–targeting, as PARP may modify
α accumulation through differential oxidative stress
aerobic versus hypoxic conditions and anti–HIF-1α

are currently being tested in preclinical and clinical
s (39, 46, 47).
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wnregulated by hypoxia; therefore, inhibition of POLB
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